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The water pressure measured during slow, constant rate drainage in a two-dimensional porous
model exhibits sudden jumps as bursts of air quickly displace water from a region. The measured
size distribution of the pressure jumps is exponential. Invasion percolation (IP) simulations give
a power-law size distribution of the connected regions invaded in bursts. In the experiments the
meniscii of the fluid-fluid front adjust during a burst, causing the capillary pressure to decrease.
Including this effect in a modified invasion percolation algorithm causes potentially large bursts
to split up into smaller bursts that are exponentially distributed. From the experimental pressure
curve it is possible to identify groups of bursts that would become a single, “composite” burst in a
larger system. These composite bursts are power-law distributed, consistent with simulations and
percolation theory. Different versions of the IP model result in different structures and power-law
exponents. The best choice of model for the present experiment is discussed.

PACS number(s): 47.55.Mh, 05.40.+j, 47.55.Kf

I. INTRODUCTION

The displacement of one fluid by another in porous me-
dia has been the object of intense studies because such
processes are able to create a rich variety of front struc-
tures depending on the relative viscosities, the wettabil-
ity, and the displacement rate. Drainage processes in
porous media are of interest both from a practical and
theoretical point of view. In the limit of very slow dis-
placement, the structure of the invading fluid has been
shown [1] to be fractal [2,3], and the process has been
modeled by the invasion percolation (IP) algorithm [4-6].

This paper presents measurements on a two-
dimensional porous model system where air displaces wa-
ter at a constant rate, resulting in a fluctuating pressure
difference between the fluid phases [7]. Corresponding
modified IP simulations display similar pressure fluctua-
tions. It is observed experimentally that with the con-
stant pumping rate, the front movement is not continu-
ous. In periods when the pressure difference across the
air-water front builds up, the interface between the flu-
ids is stable. Air invasion of a smaller or larger area of
the porous medium in a sudden burst accompanies an
abrupt decrease in the pressure difference. The appro-
priate IP model for simulation of the present experiment
is discussed, and a modified IP model is introduced and
explored.

Haines [8] and later Morrow [9] described qualitatively
this type of invasion behavior in bursts for drying pro-
cesses where evaporation of water from a heap of glass
spheres (or agricultural soils) caused all the air-water
meniscii to continuously withdraw slightly inside the pore
throats for some time. Between these stable periods
bursts occurred where larger or smaller regions of the
medium were dried out. The pressure in the water de-
creased slowly in the stable periods but exhibited a sud-
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den increase every time a region was invaded by air. Such
jumps have been termed Haines jumps. The dynamics
of drying can be described by the algorithm presented
here, with the modification that the evaporation rate is
not constant, but slows down as the distance between
the fluid-air front and the open edge of the system in-
creases. The geometric structure of drying fronts was
previously modeled by an IP algorithm [10,11]. Thomp-
son et al. [12] studied a related system, measuring jumps
in electrical resistance in mercury invasion experiments in
three-dimensional porous media. They observed a power-
law distribution of the resistance jumps consistent with
simulations [13]. This is, however, not comparable to our
measurements since not all invasion is reflected in the re-
sistance.

Recently, much interest has been focused on driven
systems exhibiting dynamic behavior with stable periods,
where energy is slowly fed into the system, interrupted by
sudden events when smaller or larger amounts of energy
are dissipated. Intermittent behavior with power-law dis-
tribution of relaxation events is characteristic of “self-
organized criticality,” a type of behavior in which driven
systems automatically evolve towards a critical state [14].
Examples of systems with intermittent behavior count
different types of spring-block systems with stick-slip mo-
tion [15-17]. Simple experimental spring-block systems
[15,17] exhibit dynamic behavior very similar to that of
our drainage experiment. There is, however, a difference
between these systems and IP: In self-organized critical
systems, disorder is produced dynamically from the ini-
tial conditions and/or the randomness in, for example,
dropping grains. IP models have quenched disorder that
is given by the random medium when the experiment
starts. In addition, the IP model is critical only in zero-
gravity field.

In this paper we present an analysis of the water pres-
sure measured during displacement of water by air. The
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distribution of pressure jump heights is found to be expo-
nential. We demonstrate that the experiments are mod-
eled by a modified IP algorithm that takes into account
the incompressibility of water, which causes the capillary
pressure to decrease abruptly during a quick displace-
ment in a burst. With this effect included in the algo-
rithm, we obtain a realistic time evolution of the water
pressure. On the other hand, the parameters may be
varied in the simulations, the meniscii can be assigned
a large ability to adjust, or the front can be defined to
be long. In this case we obtain a power-law pressure
jump distribution. It is in principle possible, but it will
be difficult to construct a large experiment where power-
law distributions of pressure jumps can be measured over
any significant range of sizes. For systems comparable to
the experiments with small system sizes and fronts that
can only adjust slightly before one meniscus breaks, sim-
ulations show that the large bursts break up and an ex-
ponential distribution of jumps is obtained in accordance
with the experiments.

The geometric sizes of regions invaded in bursts
are roughly proportional to the accompanying pressure
jumps. The exponents governing the power-law distri-
bution of geometric burst sizes in slow drainage was re-
lated to percolation [18] exponents independently by two
groups: Martys et al. [19] used finite-size scaling tech-
niques, and Gouyet and co-workers [20,21] initially stud-
ied diffusion front fluctuations and argued via the prob-
ability of connection and disconnection of finite percola-
tion clusters to the front. Our simulation results confirm
their scaling predictions for burst-size distributions for
all three possible cases of IP simulations in two dimen-
sions: The front where the IP cluster is allowed to grow
is defined as (1) the Grossman-Aharony external perime-
ter [22], (2) the hull [23], or (3) the full perimeter; the
union of the outer hull and inner hulls surrounding finite
defender regions.

It is demonstrated that the simulated pressure curves
can be analyzed in a way that permits us to extract
the underlying power-law distributions also from pressure
curves that have an exponential jump size distribution.
The power law extracted from the experimental curve
by this method is consistent with the IP model results
and is thus described by percolation exponents. This is
therefore an example of a real system with intermittent
behavior that can be mapped to a familiar model, the IP
model.

The paper is structured as follows. In Sec. II we review
the physical mechanisms that govern the slow drainage
in porous media, while Sec. III presents the experiment
and the experimental results. The modified IP algorithm
is defined in Sec. IV, where also the validity of the model
is discussed. Simulation results such as burst-size distri-
bution and cutoff, waiting time distribution, and results
of interest for the theory of IP are presented in Sec. V.
In Sec. VI simulation parameters are estimated from the
experiments and the burst-size distribution obtained in
simulations is compared both to the experimental burst-
size distributions and the “composite bursts” obtained

from experimental pressure curves. A summary follows
in Sec. VIIL.

II. MECHANISMS OF SLOW DRAINAGE
IN POROUS MEDIA

The process where a nonwetting fluid (air) displaces
a wetting fluid (water) from a porous medium is called
drainage. As discussed in the Introduction, IP patterns
are generated during slow drainage. Changes in the in-
vaded pattern with the wetting properties of the fluids
were studied by Martys et al. [24]. When the invading
fluid becomes more wetting, the growth becomes corre-
lated and self-affine fronts appear [25]. Our experiment is
in the regime where the displaced fluid wets the medium
well, front segments move independently, and self-similar
structures are created. The characteristic of a slow dis-
placement process is that viscous pressure gradients have
time to relax between front movements and capillary ef-
fects govern the displacement.

The porous medium has open interconnected pores of
fluctuating size, with a mean pore size a. We describe
displacement that is caused by water being pumped out
of the system at a slow, constant rate causing air to be
pulled in from an open edge at the same rate. The dy-
namics is identical to that of displacement due to air
being injected into the model at a constant rate. At
some stable stage of the displacement process, the air
has invaded a region of the void space, and the air-water
interface is broken up into meniscii that meet the solid
grains of the medium with a contact angle determined
by the wetting properties of the fluids (see Fig. 1). The
pressure difference p.,, between air and water (the capil-
lary pressure) is the same everywhere along the front and
Peap = Y(1/r1 + 1/72) where v is the interfacial tension
and r; and 7y are the principal radii of curvature of the
interface. When water is pumped out of the system, the
meniscii are pulled slightly towards more narrow parts of
the pores and the local radii of curvature decrease caus-
ing an increase in the capillary pressure. If the capillary
pressure between the fluids becomes larger than the capil-
lary pressure threshold (the equilibrium capillary pressure
of the narrowest part of the pore) of the broadest pore
neck, the front becomes unstable at this position. The
air-water meniscii proceed quickly to find a new stable
position. Many pores can be invaded by air in such a
burst if pores with low capillary pressure thresholds are
encountered after the breakthrough in one pore throat.
The size of a burst is defined as the number of pores s
that are invaded from the instant the interface becomes

FIG. 1.
dimensional porous medium initially filled with water. As
water is extracted, the interface moves into narrower parts of

(a)=(c) Invasion of air (white) into a two-

the pore necks. During a burst, new pores are invaded and
the interface adjusts everywhere back to the lower capillary
pressure.



968 LIV FURUBERG, KNUT JORGEN MALQ@Y, AND JENS FEDER

unstable until it finds a new stable configuration. Since
the pumping rate is very slow compared with the time
scale of a burst, the water volume that is displaced when
air invades the new pores must be pushed towards the
adjustable front meniscii, causing the meniscii to quickly
readjust back to larger radii and the capillary pressure to
decrease in a jump. The ability of the interfacial meniscii
to receive or give up a capacitive volume of water due to
small readjustments of the meniscii is thus responsible
for the Haines jumps.

Starting a burst from a quite high value of the capillary
pressure, it decreases at some rate down to a capillary
pressure that is too low for further invasion. The total
amount of water that the front is in position to receive
after one meniscus breaks, before the pressure becomes
too low for continuing invasion, puts an upper limit on
the size of the burst. The rate of change in the average
volume of water received in a front pore with the capillary
pressure is defined as the volume capacitance

K = dv/dpcap, (1)

[k] = m5/N, where v is the average volume of water re-
ceived in an interfacial pore since the beginning of the
burst. We assume & is a constant. This is a simplifica-
tion because the water volume received by the front is not
necessarily linearly dependent on the capillary pressure,
or constant over the pressure range, and hysteresis effects
will occur when the meniscii move back and forth. The
maximum available volume V; that the front is in a posi-
tion to receive when a meniscus breaks and a burst starts
is then given by the product of the number ns of pores
at the interface, the volume capacitance, and the average
capillary pressure threshold pgiart Where a burst starts:
Vf & Kpstartntg. The magnitude of the capillary pressure
jump IT accompanying a burst is proportional to the size
s of the region spontaneously invaded and inversely pro-
portional to kny: Il  s/(knys). As noted by Morrow [9],
pressure jumps of visible size are a characteristic of small
systems only. An argument for this statement is found
in Sec. V, Eq. (7), where we show that the typical largest
burst size grows more slowly with the system size than
does the front length ny.

A burst has a characteristic time scale 7., that de-
pends on the viscosity of the fluids, a typical capillary
pressure jump, and the size of the system. If the pump-
ing rate is so large compared to the time scale of a burst
that a significant amount of water is pumped out of the
system during a burst, the structure of the invaded area
will be changed due to viscous pressure gradients, and
the IP algorithm is no longer a good model for the dis-
placement. Furthermore, the burst-size distribution will
be changed, and the burst sizes will not be limited by the
water volume that can be received by the front.

The time scale of a burst can be roughly estimated by
the following argument: The meniscus that is situated at
the typically largest possible distance L (the system size)
from the burst region will relax most slowly, because the
flow of water from the burst area to the meniscus will be
driven by a pressure gradient of the order pcap/L. The
water velocity close to the meniscus is then approximated
by Darcy’s law: U ~ —(a%pcap)/(pL) where p is the vis-
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cosity of water, a is the mean pore diameter, and a? is
a rough estimate of the permeability. This must equal
the meniscus velocity given by the capillary pressure-
volume relation [Eq. (1)]: U ~ d(kpcap/a?)/dt, where
a? is a characteristic cross section of a pore. By setting
these velocities equal to each other we obtain an expo-
nential relaxation of the capillary pressure at the remote
meniscus position with a characteristic relaxation time
Teap = (uLk)/a*. By dimensional analysis k = a%/~,
so that Tcap = pL/vy. This time scale must then be
compared with the time scale 7, for the pumping rate:
Tp = a/vq where the fluid velocity v, in a typical pore
is given by the pumping rate ¢ divided by the number
of pores L along the edge where water is withdrawn:
q = vgL. The ratio of these characteristic times gives
a “capillary number”

Car = Ml (2)
Y a

Note that this capillary number depends on the size of
the system. We expect a crossover to viscous fingering
when the length scale L is increased and the pumping
rate per pore along the outlet is kept constant.

III. EXPERIMENTS

The two-dimensional model was constructed by a
monolayer of 1 mm glass spheres between two 25 mm
Plexiglas plates (see Fig. 2). The model is transparent
and has a porosity of ¢ ~ 0.7 and an average pore vol-
ume Q ~ 2 mm?. To provide the boundaries of the model
we used a rectangular silicon rubber packing. Since the
edges of the packing are straight we also applied silicon
glue to prevent increased permeability at the boundaries.
An air pillow was inserted between the lower Plexiglas
plate and the glass beads to keep the beads in contact
with the upper plate. During the experiment, water was
withdrawn from one short side of the model with a sy-
ringe pump at a low constant rate of ¢ = 0.048 pore/s,
and the other side was open to atmospheric pressure for
invasion of air.

I | PC |
7 — i
Press— [ — |
sens
i | =
I - ‘////;
Water — %/J
/
LLGWUWWTWY/
Porous model
———
Syringe pump a
FIG. 2. Experimental setup. Quasi-two-dimensional

porous medium with pressure sensor in the water phase. Wa-
ter is pulled out at one edge by a syringe pump, while air
invades from the opposite edge that is open.
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FIG. 3. Water pressure as function of time during drainage.
The water pressure decreases steadily in stable periods as wa-
ter is slowly extracted from the system. Air invasion takes
place in bursts accompanied by sudden positive jumps in the
water pressure.

The ratio of the characteristic time scales of the re-
laxation of the front in a burst and that of pumping is
in this case Ca* = 1.3 x 1076 [Eq. (2)]. Thus the front
will relax between bursts and the pumping rate does not
affect the single burst developments.

Pressure fluctuations were measured with a pressure
sensor of our own construction [26] connected to a per-
sonal computer (PC). The sensor uses an electronic bal-
ance as the main component and is linear over four
decades with a resolution of 0.1 mm H,O and a time
response of about 1 s. The water pressure is measured
at one single point in the water phase. This point is
not very close to the water-air interface. During a burst,
local pressure fluctuations due to quick meniscus move-
ments occur close to the fluid-fluid interface. These fluc-
tuations are not registered by the pressure sensor. The
pressure measurements are reliable only in the buildup
phase, including the pressures where a burst starts and
stops. There is no information about the capillary pres-
sure during a burst, as indicated by the almost vertical
pressure jumps that occur for each burst, see Fig. 3.

An experiment consisted of about 70 000 pressure mea-
surements taken at 1 s intervals (see Fig. 3). The bursts
were identified as sharp positive pressure jumps that were
larger than 0.1 mm H,O.

IV. MODIFIED INVASION PERCOLATION

The algorithm is a modified version of ordinary inva-
sion percolation [4], where the path of least resistance
is found through a disordered medium. In the modified
algorithm presented here, the geometry of the invaded
structure is identical to that of IP, but the dynamics is
different.

A. Algorithm

A square lattice of size L; X L, that consists of
nodes (pores) connected by bonds (throats) represents
the porous medium. Bonds are assigned random numbers
p; drawn from a uniform distribution in the interval [0,1],
representing capillary pressure thresholds in the throats.
Nodes are defined to have a unit volume. Initially the
lattice is filled by “water” (the defender). “Air” (the in-

vader) is injected from the source, which is defined to be
one of the short sides of the lattice, at a constant rate of
one unit volume per time unit. The defender escapes at
the sink at the opposite side at the same rate. Nodes
inside the lattice are, however, not invaded at a con-
stant rate, modeling that the injected volume can both
be stored along the fluid-fluid front (this air volume is in-
visible in the simulated invaded structure) or invade full
nodes.

The initial capillary pressure is pcap(0) = 0. During the
invasion pcap develops dynamically as described below,
and is confined between 0 and a value slightly above p. =
0.5. A bond can be invaded only if it belongs to the
growth zone, meaning that it neighbors either the source
or the present invaded cluster, and if pcap is equal to or
larger than the capillary pressure threshold p; in that
bond. If more than one available bond have p; < pcap,
the bond with the smallest p; is chosen first for invasion.
The capillary pressure of the model at time ¢ is simply
defined to be proportional to the difference between the
total injected air volume V' =t (which is the sum of the
air volume that is stored by the adjusted meniscii along
the front and the air volume in invaded pores), and the
volume N of all sites (pores) that are invaded by air at
this stage. The difference V' — N then corresponds to the
excess air volume stored along the front (physically by
adjusting the meniscii):

Peap(t) = (V = N)/(nsx). ®3)

The capillary pressure is inversely proportional to the
front length n¢, the number of bonds connecting invaded
sites to uninvaded sites. The linear relation between the
average excess air volume v = (V —N)/ny per throat and
the capillary pressure pc.p is then defined by the volume
capacitance k [see Eq. (1)]: kK = v/pcap-

The following algorithm was used in the simulations.

(1) Initially the growth zone consists of the L; sites
that neighbor the source (ny = L;), and the pressure
difference is pcap(0) = 0.

(2) The site in the growth zone that has the bond with
the smallest p; = pmin is identified.

(3) The capillary pressure pc.p increases linearly with
time until pp,iy, is reached at time ¢;, where t; = ppinnyk.

(4) The bond containing pm;, and the connected site
(one volume unit) is invaded and the capillary pressure
decreases from pmin t0 Pcap = Pmin — 1/(nfK).

(5) The growth zone is modified due to the invaded
site.

(6) The site in the new growth zone that has the bond
with the smallest p; = punin is identified. If p; is smaller
than pcap, this site is invaded, and the capillary pressure
is decreased further. Continue to find the easiest invaded
site until pmin > Pcap- At this stage s sites have been
invaded in a burst and the total capillary pressure jump
isII=—3]1/(nsk) = —s/(ngk).

(7) The capillary pressure pcap is increased linearly
with time until py;, is reached at time t2 = t1 + (Pmin —
pCap)nf K.

(8) Repeat from (3).

At step (5) the new growth zone is identified after in-
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vasion of one site. If the newly invaded site has closed
off some region of the defender so that this region is not
connected by defender sites to the sink, all growth zone
sites in this region are removed from the growth zone.
This is called a trapping rule, and it accounts for the
incompressibility of the defender.

Moreover, in this modified IP algorithm, a trapping
rule is essential for the system to reach a stationary state
with an average front length, and thus an average capac-
ity to take up excess air. Without a trapping rule the
growth zone would surround defender islands that are
left behind the front, and the average front length would
continue to increase throughout the simulation.

Only two different types of growth zones are possible
for IP with trapping, because all outer perimeters of per-
colation clusters in two dimensions fall into two classes
depending on the connectivity rules of the two phases:
The Grossman-Aharony perimeter, called the ezternal
perimeter [22], and the hull [23]. On a square lattice,
allowing sites to be connected through nearest neigh-
bors only in both the invaded and the defender phase,
the growth zone.is the external perimeter. The length
of the growth zone then scales with the system size L;
as ny o« LP<) where D, = 1.34 [22]. Letting the de-
fender phase connect both via nearest neighbors and next
nearest neighbors gives a hull growth zone with a length
ny o« LP* where Dy = 1.75 [23]. We have simulated
IP with both types of growth zones, and in the follow-
ing Dy will denote the fractal dimension of the front in
expressions valid for both perimeters.

Many of the simulation results presented in this paper
ire obtained from simulations with randomness in bonds,
as described above, and external perimeter growth zone.
In addition we performed simulations with randomness
in the sites instead of the bonds, always invading the
available site containing the smallest random number. In
this case simulations with both external perimeter and
hull growth zone were carried out. The influence of bond
or site randomness on the growth zone dimension has
been investigated by Meakin [27]. In agreement with
Meakin we observe that the effective fractal dimension
of the external perimeter for the present system sizes
changes from D, = 1.30 & 0.03 for randomness in bonds
to D, = 1.39 £ 0.02 [28] for randomness in sites.

B. Validity of model

The IP rule of choosing the easiest throats models a
system where there are no viscous pressure gradients in
the fluids. It has been supposed that this is fulfilled in
the limit of very slow displacement. The experimental
pressure curves show, however, that even if the displace-
ment rates are small, the actual displacements take place
quite quickly during bursts. We argue that even if there
are viscous pressure gradients locally in the fluids dur-
ing a burst, the total structure of the displaced area in
a burst may remain quite unaffected: Consider a burst
starting at the capillary pressure pcap. During the quick
displacement, the capillary pressure can never be larger
than pcap. This confines the area available to burst in-

vasion to that of IP, even if the order of pore invasion is
not exactly the same as in IP.

In the simulation model, the capillary pressure is de-
fined during a burst as decreasing by dp = 1/(ngx) after
invasion of one site with a unit volume. This does not
necessarily correspond to the physical pressure during a
burst, but it gives a good approximation of the correct
pressures at the points where a burst starts and stops.
The area invaded in a burst in the simulations is be-
lieved to be roughly correct even if in the experiments
the local displacement may take place in a different or-
der than always choosing the broadest available throat
due to viscous pressure gradients.

It is clear that there would be physical bounds on &
if we were simulating drainage in a real porous media
formed like a lattice with varying throat widths. The vol-
ume stored per pore throat along the front by adjusting
meniscii will in such porous media that are realizable not
be larger than the order of one pore volume. This must be
an upper bound on the volume stored in an average pore
throat when the meniscus breaks at a pcap which in the
simulations is limited from above by p. where p. = 0.5.
With an average volume vyax = 1 stored per pore throat
when a meniscus breaks, the maximal « will be of the
order K = Umax/Pc = 2. In the next section we will freely
use any value of k for theoretical considerations. The
combined parameter kny decides the capacitive volume
and therefore the largest obtainable burst. Simulations
with a large value of x combined with a realizable system
size will therefore indicate how even larger physical sys-
tems with smaller and physical values of k would behave.

V. SIMULATION RESULTS

Invasion percolation structures are known to be frac-
tal [2,3]. The number of sites s in a cluster scales with
the linear cluster size £ as s oc £2. For IP without trap-
ping D = 1.89 [18], while for IP with a growth zone
restricted to the hull or the external perimeter of the in-
vaded structure the fractal dimension has been measured
to be roughly in the range 1.86—1.89 [29] and 1.83 [4,27],
respectively. The effect of the modified IP algorithm with
a limited volume capacity is to split the invaded struc-
tures into smaller bursts. In an ideal system of infinite
size and infinite capacitive volume in the front and no
trapping, the bursts would roughly be percolation clus-
ters at p.. The burst-size distribution, however, differs
from the cluster size distribution of percolation because
the invading structure does not include all clusters but it
only reaches the subset of all percolation clusters that is
situated close to its perimeter.

A. Burst-size distribution

A burst is ideally defined as the connected structure
of sites that is invaded following one root site that grows
from the perimeter of the existing invaded region [29].
All sites in the burst have random numbers smaller than
the root site and the burst will not touch the old invaded
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region at any other sites than the root. The introduction
of the capacitive volume implies that not all available
sites with random numbers smaller than the root will
be invaded in one burst, the capillary pressure decreases
during the burst and may have to be increased before
further invasion in a new burst can take place. If the
capacitive volume is infinitely large, we obtain the ideal
case where bursts are not split up. The typical largest
burst sizes in the distributions depend on the front length
of the invaded structures LP#, the volume capacitance &,
and the capillary pressure at which meniscii break and
bursts start. The burst-size distribution N(s) for differ-
ent values of kLP/ can be written on a scaling form:

N(s) o577 f(s/5"), (4)

where s* is the typical largest burst size, depending on
kLP7s as explained below. When s <« s*, the crossover
function f is a constant, while it is exponentially decreas-
ing when s > s*. A relation between 7’ and percolation
exponents was found independently in Ref. [19] (for ex-
ternal perimeter growth zone) and in Ref. [21] (for hull
growth zone). They suggest that the burst-size distribu-
tion exponent equals

7' =1+ D;/D —1/(Dv). (5)

This relation gives 7/ = 1.53 for the hull perimeter (with
Dy chosen to be 1.86) and 7/ = 1.32 for the external
perimeter (randomness in bonds) when the front and
structure fractal dimensions are substituted for each case.
The percolation correlation length scaling exponent is
v = 4/3. In Fig. 4 simulation results from IP with a hull
growth zone and randomness in sites are shown. The
exponent 7’ is estimated to be 7/ = 1.48 £ 0.05. Sim-
ilar simulations for IP with external perimeter growth
zone and randomness in bonds give 7/ = 1.30 £+ 0.05 [7].
We thus confirm Eq. (5) for IP in both cases of external
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FIG. 4. Simulated burst-size distribution for different pa-
rameter values of (L, x): (200, 0.01) falling off most quickly,
(300, 0.1), (200, 10), (300, 10), and (300, 1000) having the
longest power-law regime. The last data (L, x)=(300, 1000)
are shown as solid squares. IP with randomness in sites
and hull growth zone, curves averaged over 200 samples.
The straight line shows the best estimate of the exponent
7/ = 1.48.

perimeter growth zone and hull growth zone [30].

The sizes of the pressure jumps are on average pro-
portional to the geometrical size s of the burst II
s/(kLP7). Transformation of variables in the distri-
bution function Eq. (4) gives the power-law behavior
n(Il) = II_",f(H/H*)(&LDf)l"'I for the size distribu-
tion of pressure jumps.

B. Cutoff on the burst-size distribution

In Fig. 4 the power-law burst-size distributions are cut
off by a characteristic largest cluster size s*, which de-
pends on the values of L and « through the characteristic
available volume stored in the front when a burst starts.
This volume will limit the largest size of the burst. The
following argument gives the characteristic burst size s*
for a chosen value of KLP#. Consider a burst starting at
the critical pressure p.. After the first site is invaded, the
pressure has decreased to [p. — 1/(kn¢)]. In percolation,
the correlation length £ scales with the distance to p.:
¢ o (p. — p)~Y, where v equals 4/3 in two-dimensional
(2D) percolation. When the size of the burst is s = 1, the
correlation length restricting the burst size is £ oc (knys)Y.
The characteristic largest burst size is reached after in-
vasion of s* sites, when the correlation length is of the
order of the linear size of the cluster:

§ o< (pe—p")7" o (f:;zf) x (h‘,ZDf)

The typical largest cluster size hence scales as

(s*)l/D )

(6)

s* o (IiTLf)VD/(1+VD) x (ICLDf)VD/(1+VD). (7)

This scaling behavior is documented in Ref. [7].
The characteristic pressure p* scales as (p. — p*)
(,kLPr)~1/(0+vD) from Eq. (6), indicating that introduc-
ing a finite volume capacitance has the effect of removing
the dynamics of the system from criticality at p., while
the geometric structure is unaffected. The capacitive vol-
ume effect results in that bursts are broken up and most
bursts start at values lower than p. around p*. Figure 5
shows the simulated pressure curve for a system where
p* = 0.37. The capillary pressure curve is turned upside
down relative to the water pressure curve in Fig. 3, be-
cause the capillary pressure increases when the pressure
in the water decreases. The characteristic pressure p* is
calculated from (p. — p*) = A(kLP<)7%28 = 0.13 (the
constant A = 0.44 was measured from Fig. 7, see below).
It is observed from Fig. 5 that the bursts indeed start
at pressures spread around p* = 0.37. The value D, is
used in the calculation because the simulations use the
external perimeter growth zone.

The distributions of pressures where the bursts start,
Dstart, are shown in Fig. 6 for different values of kLPf. It
is seen that for large values of xLP# all bursts start close
to p., resulting in a large power-law regime of the burst-
size distribution. In the other limit of very small xLP*
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FIG. 5. Simulated capillary pressure curve for a system of
size L = 100 and volume capacitance k = 0.2 with a total of
2800 invaded sites. Upper horizontal line is at p. = 0.5, lower
dashed line at p* = 0.37, the characteristic pressure for this
process.

every burst would contain one site only, and the distribu-
tion of pgtart would be roughly uniform between zero and
Pc- The rescaled distributions (see Fig. 7) show that the
most probable pgar (kLP¢) is at p. —p* = 0.44(xLP<)0-28
and there is a good data collapse for different values of
xLPe. The small deviations for rescaled pressures smaller
than zero come from the finite system sizes. The rescaled
pressures in this range correspond to sites with psart
larger than p. that have to be invaded in order to pen-
etrate the lattice. The number of these sites depends
solely on the lattice size, and invasion in smaller sys-
tems will be forced to invade more values higher above
pc- Finite-size effects due to the deviation from p. given
by the lattice size itself, (p. — p) oc £~1/¥ oc L™¥, will
govern the cutoff burst size if this correlation length is
smaller than that given by the finite capacity effect. The
capacity of the front decides the maximum burst size if
L > (kLP#)¥/(+vD) [or equally & < LY/*+P~Ds_ This is
fulfilled for the rescaled results shown in Fig. 7.

ol ,

0 0.1 0.2 03 0.4 0.5 0.6
Pstart

-

FIG. 6. Simulated distributions of pressures pstart Where
bursts start for different combinations of the system size L;
and the capacity k (L, k). Broadest distribution: (300,0.01),
then (400,0.1), (300,1), (400,10), and (300, 100) for the nar-
rowest distribution. All curves are averaged over 200 simula-
tions. The simulations have randomness in bonds and exter-
nal perimeter growth zone.
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FIG. 7. Rescaled and collapsing distributions of pressures
where bursts start, same combinations of parameters as in
Fig. 6.

C. Waiting time distribution

The simulations start with a zero pressure difference
between the phases. Initially, the injected volume will
mainly result in a larger excess “air” volume stored along
the front, and a higher capillary pressure. After the pres-
sure reaches p. — p* for the first time, it will continue
to fluctuate around this value, and the volume that is
injected into the model in a time period is on average
equal to the number of sites (with unit volume) invaded
in the same time period. We measured the waiting times
A between successive bursts in the stationary invasion
regime A = t, — t,—1, where t,, denotes the time when
burst number n occurred. The waiting time distribution
for different values of kLPf is shown in Fig. 8. The distri-
butions are exponential for small xLP#, consistent with
experiments [7]. For larger capacitive volumes, the dis-
tributions are more difficult to characterize. They are,
however, not power-law distributed.

The average waiting time between two successive
bursts, averaged over M bursts in the stationary inva-

FIG. 8. Simulated distributions of waiting times between
two subsequent bursts for different values of (L,x): (300,
1000) lowest curve, (200, 10), (300, 0.1), (200, 0.01) upper
curve. IP with randomness in sites and with hull growth
zone, curves averaged over 200 samples.
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FIG. 9. Average waiting time between subsequent bursts
(open circles) and average burst sizes (small solid squares) as
a function of kLP<. Each point is averaged over 200 samples.
Straight line has slope 0.45. The simulations have randomness
in bonds and external perimeter growth zone.

sion regime, is defined as (A) = (1/M)ZM | (t, — tn_1).
The average waiting time diverges when kLPf — oo
as (A) ~ (kLPr)Y. The average burst size (s) is
expected to diverge with the same exponent, because
the average burst size must equal the average air vol-
ume pumped in between bursts in the stationary regime.
The relation between the scaling exponent 4’ and per-
colation exponents is found by calculating the first mo-
ment of the burst-size distribution [Eq. (4)] as a func-
tion of kLP# = (p. — p*)~(1TP¥) | expecting the average
burst size to increase when (p. — p*) — 0. We obtain
(s) ~ [sN(s)ds ~ (kLPr)(i+Dv=Dsv)/(1+Dv)  where
v'=(1+Dv—-Dyv)/(1+ Dv) = 0.46 when D = 1.83
and Dy = 1.39. The average waiting time between suc-
cessive bursts is measured for the case of site IP with
external perimeter growth zone, and the average waiting
time is found to scale in good accordance with theory as
(see Fig. 9) (A) ~ (kLP<)"', with v/ = 0.46 £ 0.02.

Figure 10 shows that the average waiting time (A(s))
immediately before a burst of size s is always indepen-
dent of the size of the burst. This means that on average
the system is not stable for any longer time period imme-
diately before a huge burst than it is preceding a small
burst. The large fluctuations in (A(s)) for large burst
sizes are due to poor statistics.
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FIG. 10. Mean waiting time immediately before a burst of
size s. Averaged over 200 samples.

D. Sequence of random numbers

In the simulations we can obtain information that is
not available from the experiments: the precise value of
the random numbers, representing the capillary pressure
thresholds, in the sites that are invaded. This section
presents results from analysis of this sequence that con-
firm a recently published theory on scaling in growth
models [31]. The sequence of random numbers in the
successively invaded sites pmin(/V), where N is the num-
ber of invaded sites, was first analyzed by Roux and
Guyon [29] (Fig. 11). This curve contains much more
information than the pressure curve obtainable in exper-
iments, because the experimental pressure curves only
give a knowledge of the capillary pressure thresholds in
the pore throats where bursts start. The rest of the capil-
lary pressure thresholds are hidden in the pressure jumps.

Roux and Guyon [29] suggested that in IP simulations
(corresponding to an infinite KLP< in our case) the burst
sizes could be extracted from the sequence of random
numbers. Starting from one invaded site containing the
random number p.,;,, count the number of sites succes-
sively invaded after this site that are connected to the
previous invaded structure by this site only. This is the
case for all following sites with random numbers smaller
than pmin. The number of sites invaded in a connected
cluster will then be defined as a wvalley in the sequence of
random numbers. We found the distribution of all val-
leys starting in a narrow strip immediately below p. for
simulations with both external perimeter and hull growth
zone. In both cases we found power-law distributions of
valleys, governed by exponents described by Eq. (5), and
with a cutoff due to the system size only. The difference
between valleys and bursts is that valleys can be defined
to start at values confined to a narrow strip, while bursts
start at capillary pressures determined by the system and
distributed as shown in Fig. 6.

In Sec. IV we concluded that IP without trapping
would result in an ever growing perimeter of the invaded
structure, and no stationary regime for the capacitive air
volume would be reached. We are, however, free to find

0k 4

9800 9850 9900 9950 10000
N

FIG. 11. Sequence of invaded random numbers pmin(IV)
(capillary pressure thresholds). Lines with slope 1/(nsk) start
at some invaded random numbers where bursts start. The
burst size is the number of invaded sites before the line hits
the curve.
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the valley size distribution of the sequence of random
numbers also in the case of no trapping. The valley size
distribution will correspond to the burst distribution in
an unphysical, ideal system with an infinite volume ca-
pacity that does not depend on the front length. In this
way we will be able to check Eq. (5) for IP without trap-
ping. The cumulative valley distribution of valleys start-
ing at random numbers between 0.580 and 0.595 is shown
in Fig. 12, for site IP. Note that valleys are allowed to
proceed in parallel, but this will not happen frequently
since the strip is narrow. The power-law exponent was
measured to be 7/ = 1.60 £ 0.02. This value satisfies
Eq. (5) with Dy = D. The size distribution of percola-
tion clusters split off by removing one bond is governed
by the same exponent [32,33].

Hierarchical forward bursts are defined to start at ev-
ery invaded site (every random number in the sequence)
and to proceed forwards until the horizontal line hits the
sequence of random numbers curve again. The distribu-
tion of forward hierarchical bursts is shown as the lower
curve in Fig. 12. The hierarchical burst-size distribution
is found to decrease as a power law with an exponent
721l = 2.00 + 0.01 for all three trapping rules in two di-
mensions. Maslov [31] recently showed that this result is
true for a class of invasion models including also the inter-
face depinning model [34] and the Bak-Sneppen evolution
model [35]. Hierarchical bursts start in the range 0-p.
while bursts start in a narrow range of p values. Maslov
argued that the invaded random numbers pp,i, were dis-
tributed as P(pmin) ~ (Pc — pmin)(z_"')D”_1 close to pe.
Integrating over burst-size distributions in the range 0—p.
with the proper weight and cutoff he obtains T]?“ =2.

The sequence of invaded random numbers also contains
all the information we need for calculating the burst sizes,
given the finite parameter x and the finite growth zone
length at each stage of the invasion. If a burst starts at a
site with random number p.,;,, the size of the following
burst is found by drawing a straight line with a slope
1/(xnys) downwards until it hits the curve after s invaded
sites, as indicated in Fig. 11. Since ny fluctuates around

10°

107}
107°
1073

FIG. 12. Forward burst-size distribution for IP without
trapping. Bursts start in narrow strip around p.. System size
L; = 300, average over 50 samples. Line of best fit has slope
7' = 1.60. The lower curve is the distribution of hierarchical
bursts, negative slope of line is T}’” = 2.0.

some mean value, the downwards slopes will fluctuate
too. In the limit kLP# — oo, the lines are horizontal,
so that if a site with random number larger than p. is
invaded, the following valley will sometimes “contain”
the rest of the statistics.

VI. COMPARISON BETWEEN EXPERIMENTS
AND SIMULATIONS

In this section we present results from the analysis of
the experimental pressure curve in Fig. 3, namely, the
burst or pressure jump distribution and the distribution
of “composite bursts” or valleys in the pressure curve.
The results are compared with simulations, where the
simulation parameters have been estimated from the ex-
periment.

We are at present uncertain whether our experimental
front is best described by IP with the hull [20] or the
external perimeter [19] as the growth zone model. The
choice depends on the connectivity of the fluid phases,
which in turn depends on how well the fluids wet the
walls, the bead packing, and other effects. Reference [24]
found a front corresponding to the external perimeter in
simulations of drainage that included the detailed menis-
cus movements. Measurements of the fractal dimensions
of experimentally invaded structures [36] are too uncer-
tain to differentiate between the two trapping rules. It
is also possible that experimental perimeters are a mix-
ture of the two. In this section results from bond IP
with external perimeter growth zone are compared with
experiments.

We want to estimate the simulation parameters x and
L from the experiment. The number of pores along the
baseline in the experiment is about L = 100, so that
in the beginning of the experiment the front length is
ng = 100. The experimental change in capillary pres-
sure per unit time dpexpt/dt ~ 0.06 (mm H,O0)/s is es-
timated from the slope of the pressure curve (Fig. 3) in
the buildup phase, where the water pressure decreases
slowly. The extraction rate implies that the change of wa-
ter volume along the front per time unit during buildup is
dV/dt = 0.048 pores per second. This gives Kexpt =~ 0.008
pores per mm H>O for the experiment. The relevant
property of the system is, however, not x, but the average
total capacity of the front to receive a water volume at the
stage when a burst starts. This capacity depends also on
the pressures where bursts start. In the simulations, cap-
illary pressures where bursts start are found in the range
0-0.55 for systems of the same size as the experiment
(L = 100), while in the experiments they are approxi-
mately within a range of 0-16 mm H;O. The capillary
pressure threshold distribution of the porous medium is
unknown. Assuming a uniform distribution of capillary
pressure thresholds in the porous medium gives the fol-
lowing linear relation between the experimentally mea-
sured pressures pexpt and the corresponding simulated
PIessures Peap: Peap = 0.034[Pexpt (mm H,0)]. Using this
transformation, the estimate for k becomes x ~ 0.2. Fig-
ure 13 shows the distributions of pressures where bursts
start, psiart, for both experiments and simulations with
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FIG. 13. Distribution of pressures where bursts start for
the experiment (solid squares) and for simulations with
L, = 100, k = 0.2, 3500 invaded sites, averaged over 50 runs
(solid line).

parameters estimated from the experiment. Since there
is a good correspondence, we conclude that the capillary
pressure threshold distribution in the porous medium is
well described by a uniform distribution in the range of
pressures where bursts start and therefore the range that
governs the dynamics.

Figure 14 shows the exponentially decreasing cumu-
lative pressure jump distributions for three different ex-
periments together with matched simulations and a fitted
exponentially decreasing curve. Pressures P = II/(II) are
divided by (II) which is the mean value of the pressure
jumps II above the experimental resolution of 0.1 mm
water. Simulations are stopped after 750 bursts, which
is the typical total number of bursts in an experiment.

Valleys in the pressure curve

The experimentally measured pressure jump size dis-
tributions are exponentially decreasing. With parame-
ters corresponding to the experiment, also the simulated
distributions are exponential, while for large values of the
parameters L and x, we obtain power-law distributions.
We present a method that enables us to obtain latent
power laws from the experimental pressure curves, even
if the pressure jumps themselves are exponentially dis-
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FIG. 14. Cumulative pressure jump distribution obtained
from experiments and simulations with k = 0.2, L = 100 (av-
eraged over 100 runs). Dashed line: exponentially decreasing
curve, N(P > P*) ox e *31P" Solid line: simulations.

tributed. The method is inspired by that used for recog-
nition of connected invaded regions from the sequence of
random numbers in Sec. VD. However, in the case of
the sequence of random numbers, the connected burst
size is equal to the horizontal distance between crossings
with a horizontal line. In the case of the pressure curve,
connected composite bursts are proportional to the sum
of the vertical jumps between horizontal crossings.

Consider a burst starting at a relatively high capillary
pressure Pcap(t1) (close to p.), at time t; (see Fig. 5). In
a system where the capillary pressure decreases quickly
when one pore volume is invaded, the burst will not be
able to proceed after invasion of only a few sites. The
capillary pressure has to be increased again by extrac-
tion of water before new invasion can take place. If the
capillary pressure starting the next burst is smaller than
Pcap(t1), both these bursts would have been included in
a larger burst in a system where the pressure did not de-
crease significantly when pores were invaded. Only when
the capillary pressure must be increased above pcap (1)
in order to start a burst, would the ideal system exhibit a
new burst. A horizontal line drawn in the pressure curve
(Fig. 3 or 5) beginning at pcap(t1) and ending where the
capillary pressure curve is at the same level again at ¢, is
defined to be a walley and it covers all burst that would
have been included in one large burst starting at pcap (1)
in an ideal system. The time interval (t; — t1) is pro-
portional (disregarding front length fluctuations that will
average out) to the number of sites invaded at pressures
smaller than pcap(t1) because when the pressure of the
system is at the same level after a time (¢ —¢1), then the
number of sites invaded in the mean time is roughly the
volume injected into the system. Alternatively, all pres-
sure jumps between t; and t2 could have been added to
get a composite burst which is proportional to the time
difference (t3 — t1).

We have chosen to find the size distribution of all val-
leys that start in a narrow strip of capillary pressures
(Pmin —Pmax) only. This pressure range must be chosen in
such a way that pn, is larger than p* in order to extend
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FIG. 15. Burst-size distribution (solid squares) and val-
ley size distribution (full line), valleys starting between
Pmin = 0.49 and p. = 0.50 for simulated system with x = 10,
L = 300. The valley size distribution follows a power law in
an extended regime.
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FIG. 16. (a): Exponential cumulative pressure jump dis-
tribution (X = Apcap). (b) Cumulative valley size distribu-
tion for the experiments and the simulations. X = Y Apeap,
where the sum is over one valley. Valleys start in a strip be-
tween pmin ~ 14 mm H20 and 16 mm H3O in the experiments.
Computer simulation results for a corresponding system with
L, = 100, k = 0.2, 3500 invaded sites averaged over 50 runs
(broken line).

the power-law regime of the valley distribution from that
of the pressure jump distribution. In general the power-
law range is extended further the closer to p. the strip is
chosen. Figure 15 demonstrates for a simulation how the
valley size distribution gives a more extended power-law
regime than the burst sizes for a system with L = 300 and
£ = 10. In Fig. 16 the cumulative valley size distribution
obtained from experiments with a strip in the pressure
range 14-16 mm H>O is presented, together with simula-
tions with a strip in the range 0.45-0.50. The measured
cumulative valley size distribution is consistent with a
power-law behavior with an exponent 7/ —1 = 0.45+0.10,
which cannot be differentiated from the simulation re-
sult. In the simulations we observed a crossover between
the exponents 7/ and 73! = 2.0 (see Sec. VD) when the
strip became broader, so that the measured experimen-
tal slope 1.45 is probably a little larger than the "real”
7!, This favors an external perimeter growth zone as the
best model for the experimental front.

All information of the bursts and valleys is contained in
the curve of the sequence of random numbers (Fig. 11).
We demonstrated that burst sizes were obtained from
decreasing lines, while the parallel of valleys would be
obtained with horizontal lines. However, the capillary
pressure thresholds of the invaded throats are not avail-
able from the pressure measurements. Nevertheless, it
is possible to extract the data from the pressure curve,
which contains much less information.

VII. SUMMARY

Experiments in a quite small two-dimensional porous
medium show that if water is extracted at a slow constant
rate, air displaces the water in bursts. The distribution
of burst sizes, assumed to be proportional to the jump
heights of the pressure curve, was found to be exponen-
tially decreasing. A modification of the well known IP
model [4] included volumes assigned to the pores (sites)
and an invader defined to be injected at a constant rate.
The pressure was defined to be linearly dependent on
the difference between the amount of “air” that was in-
jected into the model and the number of sites invaded by
“air.” Parameters estimated from the experimental pres-
sure curve gave results in good agreement with the exper-
iment. Simulations of systems that had a larger capacity
to receive a water volume when bursts started, exhibited
a power-law distribution of burst sizes. The power-law
exponents confirmed the connection to percolation expo-
nents presented by Refs. [19,20]. By constructing a very
large experiment, one would probably obtain the same
power-law distribution for experimental bursts. Analy-
sis of the experimental pressure curve, disregarding the
splitting up of potentially large bursts due to the finite
capacitive volume, indeed supports this hypothesis.

The burst-size distribution in simulations was earlier
studied in Refs. [19,20] by modeling a steadily increas-
ing pressure, and observing the bursts invaded when the
pressure increased slightly. This procedure would have
been very difficult to achieve in an experiment: The pres-
sure would have to be instantaneously controlled, and the
geometric burst sizes would have to be extracted from
photographs. The present analysis gives the same infor-
mation from the pressure fluctuations.

Reference [37] argues that the expression for the expo-
nent 7' governing the burst-size distribution [Eq. (5)] is
also valid for dimensions higher than the upper critical
dimension d > 6. They expect the relation to hold also
in three dimensions, but this needs to be tested.
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